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Abstract
Any state of the box–ball system (BBS) together with its time evolution is
described by the N-soliton solution (with appropriate choice of N) of the
ultradiscrete KdV equation. It is shown that simultaneous elimination of all
‘10’-walls in a state of the BBS corresponds exactly to reducing the parameters
that determine ‘the size of a soliton’ by one. This observation leads to an
expression for the solution to the initial-value problem (IVP) for the BBS.
Expressions for the solution to the IVP for the ultradiscrete Toda molecule
equation and the periodic BBS are also presented.

PACS numbers: 04.20.Ex, 02.30.Ik, 05.45.Yv

1. Motivation and results

A state of the box–ball system (BBS) of Takahashi–Satsuma [1] evolves in time according to an
equation which is an ultradiscretization of the discrete KdV equation (called the ultradiscrete
KdV equation or UDKdV for short); a class of soliton solutions of the latter describes a state
of the BBS together with its time evolution. This was already pointed out in the first paper on
the ultradiscretization [2]. Since then there appeared many research papers on the BBS and
its extensions [3–20], but it seems that research on the connection with the soliton solution
has not been pursued so much. Our motivation was to investigate that connection, and we
obtained the following results:

(1) For any given state of the BBS, we show how to identify the parameters of the soliton
solution of the UDKdV in order to describe the state and its time evolution.

(2) Simultaneous elimination of all ‘10’-walls in a state of the BBS corresponds exactly to
reducing the parameters that determine ‘the size of a soliton’ by one.

(3) The above result enables one to determine a ‘permutation of solitons’. This leads to
expressions for the solution to the initial-value problem (IVP) for the BBS and for the
ultradiscrete Toda molecule equation.
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(4) Any state of the periodic BBS (PBBS) [9] can be constructed as a restriction of a limit of
a sequence of states of the BBS. Through this route, an expression for the solution to the
IVP for the PBBS is obtained.

In the following preparatory section, we derive several properties of the N-soliton solution
of the UDKdV which will play a role in later sections. In sections 3–6 we state and prove the
above-mentioned results.

2. The N-soliton solution of the ultradiscrete KdV equation

The equation

τ t+1
n+1τ

t−1
n = (1 − δ)τ t

n+1τ
t
n + δτ t−1

n+1 τ t+1
n (1)

is known as the discrete KdV equation (in ‘bilinear form’) where n and t are space and time
variable, respectively, assumed usually to be integers and τ is real valued. Applying a limiting
procedure known as the ultradiscretization [2] we have

ρt+1
n+1 + ρt−1

n = max
{
ρt

n+1 + ρt
n, ρ

t−1
n+1 + ρt+1

n − 1
}
, (2)

where we have put δ = exp(−1/ε) and assumed the existence of ρt
n = limε→+0 ε log τ t

n. We
call this the ultradiscrete KdV equation (UDKdV). The N-soliton solution of (1) is known,
for example, by virtue of a general theory described in [21]. Ultradiscretizing that solution
yields a solution of the UDKdV, which we call the N-soliton solution of the UDKdV, having
the following form [2]: for positive integer N and real parameters P1, . . . , PN and θ1, . . . , θN ,

ηt
n = ηt

n

(
(Pi, θi)

N
i=1

) = ηt
n(N;P1, . . . , PN ; θ1, . . . , θN)

= max

⎧⎪⎪⎨⎪⎪⎩0, max
J⊂[N]
J �=∅

⎡⎢⎢⎣∑
i∈J

(θi + tPi − n) −
∑
i,j∈J
i �=j

min{Pi, Pj }

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ , (3)

where [N ] = {1, 2, . . . , N} and maxP [· · ·] stands for max{· · · |P }. If all Pi’s and θi’s are
integer then so is ηt

n, but we will not assume so unless otherwise stated. Also we will not
restrict n and t to be integer. In this section, we explore the properties of this function
R → R, n �→ ηt

n.
First, it is convenient to rewrite (3). Let k = 0, 1, . . . , N and let J be a k-element subset

(k-subset) of [N ]. Define �t
k(J ) = �t

k

(
J ; (Pi, θi)

N
i=1

)
to be

�t
k(J ) =

∑
i∈J

(θi + tPi) −
∑
i,j∈J
i �=j

min{Pi, Pj } (k � 1) (4)

and �t
0(∅) = 0, and define �t

k = �t
k

(
(Pi, θi)

N
i=1

)
to be

�t
k = max

J⊂[N]
|J |=k

[
�t

k(J )
]

(k � 1) (5)

and �t
0 = 0. Then

ηt
n = max

{
�t

k − kn
∣∣k = 0, 1, . . . , N

}
. (6)

The following proposition is deduced immediately.

Proposition 2.1.

(a) The function n �→ ηt
n is convex and piecewise linear (namely its graph is a polygonal

curve with finitely many vertices).
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(b) There exist n1 and n2 such that ηt
n = 0 for n > n1, and ηt

n = �t
N − Nn for n < n2.

(c)

ηt
n(N; 0, . . . , 0︸ ︷︷ ︸

N

; θ1, . . . , θN) = max

{
0, max

∅�=J⊂[N]

[∑
i∈J

(θi − n)

]}
.

Note that this does not depend on t.
(d) For N > N ′ > 0

ηt
n(N;P1, . . . , PN ′ , 0, . . . , 0︸ ︷︷ ︸

N−N ′

; θ1, . . . , θN)

= ηt
n(N

′;P1, . . . , PN ′ ; θ1, . . . , θN ′) + ηt
n(N − N ′; 0, . . . , 0︸ ︷︷ ︸

N−N ′

; θN ′+1, . . . , θN).

Note that, due to (c), the second term on the right-hand side does not depend on t.

Proof. (a) and (b) are clear from (6). (c) follows from (3). Proof of (d): write (N ′, N] for
{i|i ∈ Z, N ′ < i � N}. Let ξi = θi + tPi − n if i ∈ [N ′], ξi = θi − n if i ∈ (N ′, N]. Let
ξij = min{Pi, Pj }. There follows

max

{
0, max

∅�=J⊂[N]

[ ∑
i∈J∩[N ′]

ξi +
∑

i∈J∩(N ′,N]

ξi −
∑

i,j∈J∩[N ′],
i �=j

ξij

]}

= max

{
0, max

∅�=J1⊂[N ′]

[∑
i∈J1

ξi −
∑

i,j∈J1,
i �=j

ξij

]
, max

∅�=J2⊂(N ′,N]

[∑
i∈J2

ξi

]
,

max
∅�=J1⊂[N ′]

∅�=J2⊂(N ′,N]

[∑
i∈J1

ξi −
∑

i,j∈J1,
i �=j

ξij +
∑
i∈J2

ξi

]}

= max

{
0, max

∅�=J1⊂[N ′]

[∑
i∈J1

ξi −
∑

i,j∈J1,
i �=j

ξij

]
, max

∅�=J2⊂(N ′,N]

[∑
i∈J2

ξi

]
,

max
∅�=J1⊂[N ′]

[∑
i∈J1

ξi −
∑

i,j∈J1,
i �=j

ξij

]
+ max

∅�=J2⊂(N ′,N]

[∑
i∈J2

ξi

]}

= max

{
0, max

∅�=J1⊂[N ′]

[∑
i∈J1

ξi −
∑

i,j∈J1,
i �=j

ξij

]}
+ max

{
0, max

∅�=J2⊂(N ′,N]

[∑
i∈J2

ξi

]}
,

where we have used

{J |∅ �= J ⊂ [N ]} = {J ⊂ [N ]
∣∣J ∩ [N ′] �= ∅, J ∩ (N ′, N] = ∅}⋃

{J ⊂ [N ]|J ∩ [N ′] = ∅, J ∩ (N ′, N ] �= ∅}⋃
{J ⊂ [N ]|J ∩ [N ′] �= ∅, J ∩ (N ′, N ] �= ∅}

and max{0, A,B,A + B} = max{0, A} + max{0, B}. �

Define At
k = At

k

(
(Pi, θi)

N
i=1

) = At
k(N;P1, . . . , PN ; θ1, . . . , θN) as

At
k = �t

k − �t
k−1 (k = 1, 2, . . . , N ), (7)

3
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Figure 1. The function n �→ ηt
n, (10).

so that �t
k = ∑k

i=1 At
i . Define At

0 = +∞, At
N+1 = −∞ for convenience.

Proposition 2.2. If Pi � 0 (i = 1, . . . , N) then

At
1 � At

2 � · · · � At
N ; (8)

if the stronger condition Pi > 0 (i = 1, . . . , N) holds then

At
1 > At

2 > · · · > At
N . (9)

In either case the function (6), i.e., (3), has a linear form

ηt
n = �t

k − kn (10)

in each interval n ∈ [
At

k+1, A
t
k

] = {
n ∈ R

∣∣At
k+1 � n � At

k

}
where k = 0, 1, . . . , N .

A sketch of the graph of (10) is shown in figure 1. For a proof, we introduce the concept
of ‘permutations of solitons’, which will play a crucial role in later sections. For each k ∈ [N ]
we regard J �→ �t

k(J ) as a function on the set of all k-subsets of [N ].

Lemma 2.3. Let k = 1, 2, . . . , N − 1. Let {c1, . . . , ck} be a k-subset of [N ] where the
function J �→ �t

k(J ), (4), attains its maximum. Then there exists a number ck+1 ∈ [N ], ck+1 /∈
{c1, . . . , ck}, such that J �→ �t

k+1(J ) attains its maximum at {c1, . . . , ck+1}.
Proof. Let {d1, . . . , dk+1} be a (k + 1)-subset of [N ] where �t

k+1 attains its maximum. Let
the number of elements of {d1, . . . , dk+1} ∩ {c1, . . . , ck} be r. By renaming, if necessary, we
can assume that (a) di ∈ {c1, . . . , ck} if i � r , (b) di �∈ {c1, . . . , ck} if r < i � k + 1, and (c)
Pdk+1 = min{Pdi

|r < i � k + 1}. We shall show

�t
k+1({d1, . . . , dk+1}) = �t

k+1({c1, . . . , ck, dk+1}). (11)

From trivial inequalities, min
{
Pj , Pdk+1

}
� Pdk+1 (∀ j ) and results of (c), Pdk+1 = min

{
Pdi

,

Pdk+1

}
(r < i � k), we have

k∑
i=r+1

min
{
Pdi

, Pdk+1

}
�

∑
j∈{c1,...,ck}\{d1,...,dr }

min
{
Pj , Pdk+1

}
.
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Adding
∑r

i=1 min
{
Pdi

, Pdk+1

}
to both sides of the inequality yields

∑k
i=1 min

{
Pdi

, Pdk+1

}
�∑k

i=1 min
{
Pci

, Pdk+1

}
, and hence

(
θdk+1 + tPdk+1

)−
k∑

i=1

2 min
{
Pdi

, Pdk+1

}
�
(
θdk+1 + tPdk+1

)−
k∑

i=1

2 min
{
Pci

, Pdk+1

}
.

�t
k({d1, . . . , dk}) � �t

k({c1, . . . , ck}) by the assumption on ci . From those two inequalities
we have �t

k+1({d1, . . . , dk+1}) � �t
k+1({c1, . . . , ck, dk+1}). The opposite inequality also holds

because of the assumption on di . Thus we have established (11) and the lemma follows. �

Definition 2.4. Let c1 be a number where the function c �→ �t
1({c}) = θc + tPc on [N ]

attains its maximum; choose any one of such numbers if there are many such ones. For each
k = 2, . . . , N , choose a number ck ∈ [N ], ck /∈ {c1, . . . , ck−1}, recursively such that �t

k

attains its maximum at {c1, . . . , ck} (again it is not unique in general); the existence of such
ck is assured by the preceding lemma. Then i �→ ci defines a permutation of [N ]. The set of
all such permutations is denoted by

St
N

(
(Pi, θi)

N
i=1

)
(12)

or St
N for short.

Lemma 2.5. Let σt ∈ St
N . Then

(a) �t
k = �t

k({σt (1), . . . , σt (k)}) =
∑

i=1,...,k

(
θσt (i) + tPσt (i)

)−
∑

i,j=1,...,k
i �=j

min
{
Pσt (i), Pσt (j)

};
(b) At

k = θσt (k) + tPσt (k) −
k−1∑
i=1

2 min
{
Pσt (i), Pσt (k)

};
(c) if k < l then At

k � θσt (l) + tPσt (l) −
k−1∑
i=1

2 min
{
Pσt (i), Pσt (l)

}
.

Proof. (a) and (b) are apparent. By the construction of σt we have

�t
k ({σt (1), . . . , σt (k)}) � �t

k ({σt (1), . . . , σt (k − 1), σt (l)}) .

Subtracting �t
k−1 ({σt (1), . . . , σt (k − 1)}) from both sides yields the inequality of (c). �

Proof of proposition 2.2. Let Pi � 0 (∀ i). Then min{Pσt (k), Pσt (k+1)} � 0, so that

θσt (k+1) + tPσt (k+1) −
k−1∑
i=1

2 min
{
Pσt (i), Pσt (k+1)

}
� θσt (k+1) + tPσt (k+1) −

k∑
i=1

2 min
{
Pσt (i), Pσt (k+1)

} = At
k+1.

The left-hand side is not larger than At
k by lemma 2.5 (c) and hence (8) follows. In a similar

manner we obtain (9) when Pi > 0 (∀ i).
Now assume inequalities (8), At

1 � At
2 � · · · � At

N . We shall write Ai for At
i because

the dependence on t is irrelevant. Let lk denote a straight line in the nY -plane defined by
Y = fk(n) where fk(n) = �k − kn = ∑k

i=1 Ai − kn (k = 0, 1, . . . , N). We want to show
that

max{fi(n) | i = 0, 1, . . . , N} = fk(n) for n ∈ [Ak+1, Ak]

5
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holds for every k = 0, 1, . . . , N . To this end, it is sufficient to show: (i) fk � fh holds on
[Ak+1,∞) for every pair of k ∈ {0, 1, . . . , N − 1} and h ∈ {0, 1, . . . , N} such that h � k; and
(ii) fk � fh holds on (−∞, Ak] for every pair of k ∈ {1, . . . , N} and h ∈ {0, 1, . . . , N} such
that h � k.

The proof of (i) goes as follows: let ∈ {0, 1, . . . , N − 1}. Two lines lk+1 and lk intersect at
the point with coordinates (Ak+1, fk(Ak+1)). Let h � k; the line lh crosses the horizontal line
Y = fk(Ak+1) at the point with n-coordinate 1

h

(∑
k<i�h Ai + kAk+1

)
; since this coordinate is

not larger than Ak+1 (and the slope of lh is not larger than that of lk), we have the assertion of
(i). Since lk and lk−1 intersect at n = Ak , we have fk � fk−1 on (−∞, Ak]. This leads to the
assertion of (ii). �

The following two propositions will be referred to later.

Proposition 2.6. Assume that the parameters satisfy the conditions

P1 � P2 � · · · � PN > 0

and

Pi = Pj , i < j �⇒ θi � θj .

Let

� = �
(
(Pi)

N
i=1

) = {(i, k)|i ∈ [N ], k ∈ [N ], i < k, and Pi > Pk}.
If t satisfies

t � θk − θi

Pi − Pk

+ 2(i − 1) for all (i, k) ∈ � (13)

then the set St
N

(
(Pi, θi)

N
i=1

)
contains the identity i �→ i, so that we have

At
k = θk + tPk − 2(k − 1)Pk (k = 1, . . . , N). (14)

Proof. Writing explicitly the condition for σt to be σt (i) = i for each i condition (13) is
obtained: namely, we can choose the value σt (1) as 1 if θ1 + tP1 � θk + tPk for k > 1, that is,

t � θk − θ1

P1 − Pk

for all k satisfying P1 > Pk and k > 1.

When the above condition holds we can choose σt (2) as 2 if θ2 + tP2 − 2P2 � θk + tPk − 2Pk

for k > 1, that is,

t � θk − θ2

P2 − Pk

+ 2 for all k satisfying P2 > Pk and k > 2.

Continuing the argument condition (13) follows. �

Proposition 2.7. St
N

(
(Pi, θi)

N
i=1

) = St
N

(
(Pi + x, θi)

N
i=1

)
for any x ∈ R.

Proof. Recall (4). For any k and J ⊂ [N ], |J | = k, we have

�t
k

(
J ; (Pi + x, θi)

N
i=1

) = �t
k

(
J ; (Pi, θi)

N
i=1

)
+ xk(t − k + 1).

Thus if J maximizes �t
k

(
J ; (Pi, θi)

N
i=1

)
then it maximizes �t

k

(
J ; (Pi + x, θi)

N
i=1

)
as well.

The converse is also true. Hence the proposition holds. �

For each i the equation n = At
i defines a polygonal curve in the nt-plane; an example of

such curves is shown in figure 2.

6
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Figure 2. Polygonal curves in the nt-plane defined by the equations n = At
i , i = 1, 2, 3, where

(P1, P2, P3, θ1, θ2, θ3) = (5, 2, 1, −2, 2, 5).

3. Dynamics of the box–ball system and soliton solutions of the ultradiscrete KdV
equation

The box–ball system (BBS) of Takahashi–Satsuma [1] is a discrete dynamical system (�, T ).
The set of states � is defined by

� = {f | f : Z → {0, 1} where the set f −1({1}) is finite}.
We often represent f ∈ � as a sequence of 0 and 1, and write

· · · f (−2)f (−1)f (0)f (1)f (2) · · · .
The mapping T : � → �, called the time evolution operator, is defined as explained in
figure 3. T is invertible, as is easily seen from our ‘pictorial’ definition. It is known that the
following is equivalent to the definition of T: for f ∈ �, let n0 be a lower bound of f −1({1});
then Tf ∈ � is determined by the conditions: (Tf ) (n) = 0 for n < n0, and

(Tf )(n) = min

{
1 − f (n),

n−1∑
k=−∞

f (k) −
n−1∑

k=−∞
(Tf ) (k)

}
for n � n0. (15)

Thinking of f ∈ � as a state at t = 0 we call T tf = T t (f ) the state at t (t ∈ Z) where T t is
t times composition of T if t > 0, or |t | times composition of T −1 if t < 0. Sometimes we
write f t for T t (f ).

Let f ∈ �. Let i, m ∈ Z and m > 0. We say f has a block (of 1’s) of length m at position
i if f (j) = 1 for i −m � j � i − 1, and f (i) = f (i −m− 1) = 0. (The term ‘block’ is used
in a different meaning from that in [10].) We say f has (or there is) a ‘10’-wall at position i
if f (i − 1) = 1 and f (i) = 0. The number of blocks contained in f is denoted by p1(f ).
Positions of blocks are denoted by a1(f ) > a2(f ) > · · · > ap1(f )(f ). The block at position
ai(f ) is called the ith block. It is convenient to consider that p1 is a mapping of � into Z�0.

7
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Figure 3. Definition of T: let f ∈ �. (a) In the sequence f find a pair of positions i and i + 1 such
that f (i) = 1 and f (i + 1) = 0, and mark them; repeat the same procedure until all such pairs are
marked. (b) Skipping the marked positions we get a subsequence of f ; for this subsequence repeat
the same process of marking positions, so that we get another marked subsequence. (c) Repeat
(b) until one obtains a subsequence consisting only of 0’s. The situation is depicted in the upper
figure. After these preparatory processes, change all values at the marked positions simultaneously;
then we get a sequence Tf . (The term ‘marked position’ will be used again in section 6.)

Figure 4. The ‘10’-elimination.

Given f , a state Ef = E(f ) is defined to be

(Ef )(n) =

⎧⎪⎪⎨⎪⎪⎩
f (n + 1) (n � a1(f )),

f (n − 2k + 1) (ak+1(f ) + 2k � n � ak(f ) + 2k − 3;
k = 1, 2, . . . , p1(f ) − 1),

f (n − 2p1(f ) + 1) (n � ap1(f ) + 2p1(f ) − 3).

The mapping E : � → � is called the ‘10’-elimination. Ef is a subsequence of f obtained
by eliminating all ‘10’-walls in f simultaneously (see figure 4). Define pi(f ), i = 2, 3, . . . ,

to be

pi(f ) = p1(E
i−1(f )).

As is easily seen pi(T (f )) = pi(f ) hold, so that they are conserved quantities of the BBS.
Since

∑∞
i=1 pi(f ) = |f −1({1})| and p1(f ) � p2(f ) � p3(f ) � · · · , the sequence p(f ) =

(p1(f ), p2(f ), . . .) is a partition of the integer |f −1({1})|. The conjugate of the partition
p(f ) is denoted by L(f ) = (L1(f ), L2(f ), . . .), that is, Lj(f ) = |{i|i � 1, pi(f ) � j}|.

The following fact is theorem 1 in [4] with minor modifications, describing states at
sufficiently large t.

Fact 3.1. For f ∈ �, there exists a real number t0 such that if t � t0 then

ai(f
t ) − ak(f

t ) − 2(k − i)Lk(f ) � 0 for all i, k such that i < k

(so that in particular a1(f
t ) > a2(f

t ) > · · · > ap1(f )(f
t )), ai(f

t ) = Li(f )t + consti , and

f t (n) =
⎧⎨⎩1 if n ∈

⋃
i=1,...,p1(f )

[ai(f
t ) − Li(f ), ai(f

t ) − 1],

0 otherwise .

8
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Figure 5. Structure of the UDKdV (2): once the values at the sites of black dots are given then
the value at the site of white dot is determined.

Let f ∈ � and ut
n = (T tf )(n). It follows from (15) that

(
ut

n

)
satisfies

ut
n = min

{
1 − ut−1

n ,

n−1∑
k=−∞

ut−1
k −

n−1∑
k=−∞

ut
k

}
. (16)

This equation is also called the ultradiscrete KdV equation because it is obtained as an
ultradiscretization of the discrete KdV equation [2]. Transforming the dependent variable as

ρt
n = ρt

n(u) =
∞∑

n′=n

t∑
t ′=−∞

ut ′
n′ (17)

(the summation is actually finite by definition of � and T) ρt
n then satisfies (2). We can solve

(17) for u as

ut
n = ρt−1

n+1 − ρt
n+1 − ρt−1

n + ρt
n. (18)

Using ai(f
t ), the position of block in f t , ρt

n can be represented explicitly as

ρt
n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 (n � a1(f

t )),∑k

i=0
ai(f

t ) − kn (ak+1(f
t ) � n � ak(f

t ); k = 1, 2, . . . , p1(f ) − 1),∑p1(f )

i=0
ai(f

t ) − p1(f )n (n � ap1(f )(f
t )).

A close similarity to (10) is apparent and we have the following theorem.

Theorem 3.2. Let f ∈ � and let t0 be as in fact 3.1. Choose the parameters in the soliton
solution ηt

n = ηt
n

(
(Pi, θi)

N
i=1

)
, (3), as N = p1(f ) and

Pi = Li(f ), θi = ai(f
t0) − t0Li(f ) + 2(i − 1)Li(f ) (i = 1, 2, . . . , p1(f )). (19)

Then ηt
n agrees with ρt

n(u), (17), and hence

ut
n = (T tf )(n) = ηt−1

n+1 − ηt
n+1 − ηt−1

n + ηt
n. (20)

Proof. ρt
n and ηt

n satisfy the same equation (2), which says once the values at the sites of
black dots (see figure 5) are given then the value at the site of white dot is determined; thus it
is sufficient to show: (a) they agree for all t > t0 and (b) there exists n0 such that they agree
for all n > n0 if t � t0.

9
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Both ρt
n and ηt

n are represented as polygonal curves with N turning points. If t � t0 the
graph of n �→ ρt

n turns at ak(f
t ) given in fact 3.1, so that ak(f

t ) = ak(f
t0) + (t − t0)Lk(f ).

On the other hand, since t0 � max{(θk −θi)/(Pi −Pk)+2(i −1)|(i, k) ∈ �} with � as defined
in proposition 2.6, if t � t0 the graph of n �→ ηt

n turns at At
i , (14). Substituting (19) into this

expression, At
k = ak(f

t0) + (t − t0)Lk(f ). Thus if t � t0 then ak(f
t ) = At

k , hence ρt
n = ηt

n.
(a) is proved.

Let n0 = a1(f
t0); then ρt0

n = ηt0
n = 0 if n � n0. Hence (since each block moves leftwards

by T −1) ρt
n = ηt

n = 0 hold for n � n0 and t � t0, which is (b). �

Corollary 3.3. Choose the parameters as in theorem 3.2. Then the position of the kth block
is given by

ak(f
t ) = At

k = θσt (k) + tPσt (k) −
k−1∑
i=1

2 min
{
Pσt (i), Pσt (k)

}
(k = 1, . . . , p1(f )), (21)

where σt ∈ St
p1(f )

(
(Pi, θi)

p1(f )

i=1

)
.

We have obtained an expression for the state of the BBS at arbitrary time t, (20), in which
parameters are given by (19), expressed by data at some large enough time t0.

4. The ‘10’-elimination and soliton solutions

Let f ∈ �, and consider that it is a state at t = 0 of the BBS. Suppose that we have an expression
for T tf , the state at arbitrary time t corresponding to the initial state f , as in theorem 3.2
in terms of p1(f )-soliton solutions with parameters P1, . . . , Pp1(f ) and θ1, . . . , θp1(f ). (We
should note that Pi � 2 if i � p2(f ), and Pi = 1 if i > p2(f ).) Then T tEf , the state at
time t corresponding to the initial state Ef (which is obtained from f by applying the ‘10’-
elimination), is expressed exactly as in the theorem by p2(f )-soliton solutions with parameters
P1, . . . , Pp2(f ) and θ1, . . . , θp2(f ).

Before proving this statement, we note that the two operators T (time evolution) and E
(‘10’-elimination) are almost commutative.

Lemma 4.1.

(ETf )(n + 1) = (T Ef )(n) for f ∈ � and n ∈ Z;
that is, if we define a shift S : � → � as (Sf )(n) = f (n + 1) then

SET = T E.

(Note that clearly we have ST = T S and SE = ES.)

Proof. It is sufficient to show for f such that Ef �= 0. Look at figure 6: compare T Ef and
a state obtained from Tf by eliminating all ‘01’s (instead of ‘10’s); clearly they agree up to
a shift of the space coordinates. On the other hand, ETf and the state obtained from Tf by
eliminating ‘01’s also agree up to a shift, for both the ‘10’-elimination and ‘01’-elimination
reduce the sizes of all blocks of 1’s and 0’s by 1. Therefore, T Ef and ETf agree up to a shift,
that is, there exists δ(f ) ∈ Z such that (ETf )(n) = (T Ef )(n + δ(f )) for all n ∈ Z.

It remains to be shown that in fact we have δ(f ) = −1 for any f . To this end we
examine how the position of the first block of 1’s moves. We write Q1(f ) for the size
of the first block of 1’s. If a1(Tf ) − a1(f ) � 2 then both a1(T Ef ) = a1(Tf ) − 1
and a1(ETf ) = a1(Tf ) hold (the latter is due to Q1(Tf ) � 2), and hence δ(f ) =
a1(T Ef ) − a1(ETf ) = −1 follows. Now consider the case of a1(Tf ) − a1(f ) = 1.

10
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Figure 6. T Ef and ETf where E′ eliminates ‘01’s.

Let Rf denote the state obtained from f by replacing the rightmost 1 by 0. We note that
a1(T (Rmf )) − a1(R

mf ) � 2 for some m, since if not so we have Ef = 0, a contradiction. It
is easily seen that a1(T Ef ) = a1(T ERf ) + 2 and a1(ETf ) = a1(ET Rf ) + 2 hold. Hence
δ(f ) = a1(T Ef ) − a1(ETf ) = a1(T ERf ) − a1(ET Rf ) = δ(Rf ) follows, and therefore
δ(f ) = δ(Rmf ) = −1. �

Theorem 4.2. Let f ∈ �. Let the parameters Pi, θi are chosen as in theorem 3.2. Then
the p2(f )-soliton solution η(1)t

n = ηt
n

(
(Pi − 1, θi)

p2(f )

i=1

)
agrees with ρt

n(u
(1)), (17), where

u(1)t
n = (T t (Ef ))(n), and hence

u(1)t
n = (T tEf )(n) = η

(1)t−1
n+1 − η

(1)t
n+1 − η(1)t−1

n + η(1)t
n .

Proof.

(a) Both η(1)t
n and ρt

n(u
(1)) satisfy the same equation (2). It is sufficient to show that they agree

for sufficiently large t (because of an analogous reason as in the proof of theorem 3.2).
We know that each of them is, for fixed t, a convex piecewise linear function of n with p2

‘turning points’ such that the slope increases by 1 when passing through each turning point,
and that it becomes the zero function on a right half infinite interval. Therefore we need
to prove that the coordinate of the kth turning point of the former, At

k

(
(Pi − 1, θi)

p2(f )

i=1

)
,

coincides with that of the latter, ak(T
tEf ), for each k = 1, . . . , p2(f ).

(b) It follows that

At
k

(
(Pi − 1, θi)

p1(f )

i=1

) = At
k

(
(Pi, θi)

p1(f )

i=1

)− t + 2(k − 1) for k = 1, . . . , p1(f ) (22)

from lemma 2.5 (b) and proposition 2.7.
Proposition 2.1 (d) implies

ηt
n

(
(Pi − 1, θi)

p1(f )

i=1

) = ηt
n

(
(Pi − 1, θi)

p2(f )

i=1

)
+ ηt

n

(
(0, θi)

p1(f )

i=p2(f )+1

)
.

Recall that the second term does not depend on t. The left-hand side (as a function
of n) ‘turns’ at At

k

(
(Pi − 1, θi)

p1(f )

i=1

)
, and the first term on the right-hand side turns at

11
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At
k

(
(Pi − 1, θi)

p2(f )

i=1

)
; both coordinates have a representation as in lemma 2.5 (b) (with

the same σt ). Thus when t  1 we have

At
k

(
(Pi − 1, θi)

p1(f )

i=1

) = At
k

(
(Pi − 1, θi)

p2(f )

i=1

)
for k = 1, . . . , p2(f ). (23)

(c) The value 0 at the position a1(T
tf ) + 1 in the sequence T tf ‘moves’, when applying

the ‘10’-elimination, to the position a1(T
tf ) in the sequence ET tf ; the position of the

corresponding 0 in the sequence T tEf will be denoted by α1(t). Precisely, given f ∈ �

such that Ef �= 0, and t ∈ Z, define α1(t) ∈ Z such that the following relation is satisfied:

(ET tf )(n + a1(T
tf )) = (T tEf )(n + α1(t)) for all n ∈ Z.

We claim that α1(t) = a1(T
tf ) − t : for T tE = StET t implies (T tEf )(n + α1(t)) =

(StET tf )(n + α1(t)) = (ET tf )(n + α1(t) + t), and this and the above definition imply
α1(t) + t = a1(T

tf ).
Again we claim that α1(t) = a1(T

tEf ) holds when t  1: because when t  1
in either ET tf and T tEf the largest block is the rightmost, whose size is � 1 since
Ef �= 0; therefore from the definition of α1(t) we have the assertion.

Accordingly, if t  1 we have

a1(T
tEf ) = a1(T

tf ) − t. (24)

It follows from fact 3.1 that when t  1 we have ai(ET tf ) − ai+1(ET tf ) =
ai(T

tf )−ai+1(T
tf )−2 for each i = 1, . . . , p2(f ); since T E = SET the left-hand side

is equal to ai(T
tEf ) − ai+1(T

tEf ), so that

ai(T
tEf ) − ai+1(T

tEf ) = ai(T
tf ) − ai+1(T

tf ) − 2 for i = 1, . . . , p2(f ). (25)

(d) Let t  1 and i = 1, . . . , p2(f ). We have

ai(T
tEf ) − ai+1(T

tEf ) = ai(T
tf ) − ai+1(T

tf ) − 2

= At
i

(
(Pi, θi)

p1(f )

i=1

)− At
i+1

(
(Pi, θi)

p1(f )

i=1

)− 2

= At
i

(
(Pi − 1, θi)

p1(f )

i=1

)− At
i+1

(
(Pi − 1, θi)

p1(f )

i=1

)
= At

i

(
(Pi − 1, θi)

p2(f )

i=1

)− At
i+1

(
(Pi − 1, θi)

p2(f )

i=1

)
,

where we have used (25), theorem 3.2, (22) and (23). On the other hand,

a1(T
tEf ) = a1(T

tf ) − t = At
1

(
(Pi, θi)

p1(f )

i=1

)− t

= At
1

(
(Pi − 1, θi)

p1(f )

i=1

) = At
1

(
(Pi − 1, θi)

p2(f )

i=1

)
,

where we have used (24). Hence, we find that

ai(T
tEf ) = At

i

(
(Pi − 1, θi)

p2(f )

i=1

)
holds, as desired. �

5. Solution to the initial-value problem for the box–ball system

Fix a state f ∈ � and write N = p1(f ). In this section, we develop a method of determining a
special element of S0

N , (12), associated with f . As a consequence we obtain a representation
of the solution to the initial-value problem (IVP) for the BBS.

Recall that pi = pi(f ) and Li = Li(f ) satisfy

p1 � · · · � ps > 0, s = L1; pi = 0 for i > s;
L1 � · · · � LN > 0, N = p1; Lj = 0 for j > N.

12
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Choose the parameters Pi, θi of the soliton solution (3) as in (19). We assume (without loss
of generality)

Pi = Pj , i < j �⇒ θi � θj . (26)

We can make the set S0
N = St=0

N

(
(Pi, θi)

N
i=1

)
into a totally ordered set by defining σ < τ in

S0
N if there exists i (1 � i � N) such that

σ(j) = τ(j) for ∀ j < i, and σ(i) < τ(i).

In what follows we write σ for the smallest element under this ordering of S0
N .

Define Jk for each k = 1, . . . , s (where s = L1) by

Jk = σ−1((pk+1, pk]) = {j ∈ [p1] | pk+1 < σ(j) � pk}. (27)

Then it follows that (i) Pσ(j) = k if j ∈ Jk , (ii) Jk = {j ∈ [p1] | Pσ(j) = k} and (iii)∑s
k=1 Jk = [N ] = [p1].

Proposition 5.1. For each k = 1, . . . , s,

i, j ∈ Jk, i < j �⇒ θσ(i) � θσ(j),

and hence

i, j ∈ Jk, i < j �⇒ σ(i) < σ(j).

Proof. For i, j ∈ Jk, i < j ,

θσ(i) − θσ(j) = A0
i +

i−1∑
h=1

2 min{Pσ(h), Pσ(i)} − θσ(j) (lemma 2.5 (b))

� −
i−1∑
h=1

2 min{Pσ(h), Pσ(j)} +
i−1∑
h=1

2 min{Pσ(h), Pσ(i)} (lemma 2.5 (c)).

Since Pσ(i) = Pσ(j) = k the right-hand side is 0, which is the first assertion.
The proof of the second assertion goes as follows:
If θσ(i) > θσ(j) then the assumption (26) implies σ(i) < σ(j).
If θσ(i) = θσ(j) then the definition of σ as the smallest element of S0

p1
implies σ(i) < σ(j):

for, if not so, that is, if σ(i) > σ(j) holds, then, defining σ̃ as σ̃ (i) = σ(j), σ̃ (j) = σ(i) and
σ̃ (h) = σ(h) for the other h, we have σ̃ (h) = σ(h) for h < i, and σ̃ (i) = σ(j) < σ(i), so
that σ̃ < σ , which contradicts the assumption on σ . �

The Jk’s therefore determine σ completely. Let us describe a method for finding the sets
Jk’s.

First, we introduce the concept of a multiset (or a set allowing repeated elements)
consisting of coordinates of turning points of a piecewise linear function.

For a positive integer N let PN denote the set of all real-valued convex piecewise linear
function on R such that: (i) the slope on each interval on which the function is linear is a
negative integer or 0; (ii) the slope on the left half infinite interval is −N ; and (iii) the slope
on the right half infinite interval is 0. For instance, the function n �→ ηt

n

(
(Pi, θi)

N
i=1

)
, (3), for

non-negative Pi’s (and for any t) belongs to PN .
We define an N-element multiset on R to be a mapping ν : R → Z�0 such that the set

supp ν = ν−1(Z>0) is finite and
∑

n∈supp ν ν(n) = N . The set of all such multisets is denoted by((
R

N

))
. If supp ν = {x1, . . . , xm} and ν(xi) = λi , then we write {x1, . . . , x1︸ ︷︷ ︸

λ1

, . . . , xm, . . . , xm︸ ︷︷ ︸
λm

}

or
{
x

λ1
1 , . . . , xλm

m

}
for the multiset.

13
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Let η ∈ PN ; if the set of coordinates of all turning points of η is {x1, . . . , xm} and the
slopes increase by λi when passing through xi , then we put dN(η) = {

x
λ1
1 , . . . , xλm

m

} ∈ ((
R

N

))
.

This defines a one-to-one correspondence dN : PN → ((
R

N

))
. From propositions 2.1 and

2.2 (cf figure 1), the image of η0
n

(
(Pi, θi)

N
i=1

)
by this mapping is a multiset consisting of

A0
k, k = 1, . . . , N , given in (7).

Put P = ⋃
N�0 PN and D = ⋃

N�0

((
R

N

))
. In either set, the sum of two elements can

be defined naturally as the sum of functions (mappings). In P , if η ∈ PN and η′ ∈ PN ′

then η + η′ ∈ PN+N ′ . Define d : P → D to be d(η) = dN(η) for η ∈ PN . Then
d(η + η′) = d(η) + d(η′).

It follows from proposition 2.1 (c), (d) that

η0
n

(
(Pi − 1, θi)

p1
i=1

) = η0
n

(
(Pi − 1, θi)

p2
i=1

)
+ η0

n

(
(0, θi)

p1
i=p2+1

)
.

(If p2 = p1 then the second term on the right-hand side does not exist; if p2 = 0 then the
first term does not exist. In what follows we will not mention such exceptional cases.) The
function on the left turns at A0

i

(
(Pi −1, θi)

p1
i=1

) = A0
i

(
(Pi, θi)

p1
i=1

)
+2(i −1) = ai(f )+2(i −1)

by lemma 2.5 (b) and corollary 3.3. The function given by the first term on the right turns at
ai(Ef ) by theorem 4.2. Thus, mapping the above equation by d yields

{ai(f ) + 2(i − 1)}p1
i=1 = {ai(Ef )}p2

i=1 ∪ {θi}p1
i=p2+1, (28)

where the right-hand side is the sum of multisets.
Whether i ∈ [p1] belongs to J1 or not can be judged as follows: write ā

(1)
i =

ai(f ) + 2(i − 1) and a
(1)
i = ai(Ef ). Let i ∈ [p1]; from (28) we have

(i) if ā
(1)
i is not equal to any a

(1)
h , h ∈ [p2], then i ∈ J1 (clear);

(ii) if ā
(1)
i is equal to a

(1)
h for some h ∈ [p2], and ā

(1)
j �= a

(1)
h for j �= i, then i �∈ J1 (again,

clear); or
(iii) if ā

(1)
i is equal to a

(1)
h for some h ∈ [p2], and ā

(1)
j = a

(1)
h for some j other than i, then

(iiia) i �∈ J1 if i = 1 or if i > 1 and ā
(1)
i−1 > ā

(1)
i or (iiib) i ∈ J1 otherwise (σ being the

smallest element in S0
p1

).

Summarizing, if we write I0 = {1, . . . , p1} and

I1 = {
i
(1)
1 , . . . , i(1)

p2

}
, i

(1)
h = min

{
i ∈ I0

∣∣ ā(1)
i = a

(1)
h

}
then J1 = I0\I1.

Similarly, from{
ā

(2)
i

}
i∈I1

= {
a

(2)
i

}p3

i=1 ∪ {
θi

}p2

i=p3+1, ā
(2)

i
(1)
h

= a
(1)
h + 2(h − 1), a

(2)
i = ai(E

2f ),

we obtain J2 = I1\I2, where

I2 = {
i
(2)
1 , . . . , i(2)

p3

}
, i

(2)
h = min

{
i ∈ I1

∣∣ ā(2)
i = a

(2)
h

}
.

Continuing this procedure we obtain all Jk’s. Thus we have established a method for
determining Jk’s and, therefore, σ , which we summarize in the following proposition.

Proposition 5.2. Let I0 = {1, . . . , p1}. Write

a
(k)
i = ai(E

kf ) (i = 1, . . . , pk+1; k = 0, 1, . . . , s − 1)

so that a
(0)
i = ai .

14
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Figure 7. Schematic example of the procedure to find Jk’s according to proposition 5.2. See also
example 5.3. Positions having coordinates ai ’s and others are indicated. In each state (sequence)
the ‘10’s surrounded by dotted squares will be eliminated when E is applied.

(a) For k = 1, . . . , s − 1, we define ā
(k)
i , i

(k)
h and Ik by the recurrence

ā
(k)

i
(k−1)
j

= a
(k−1)
j + 2(j − 1) (j = 1, . . . , pk),

i
(k)
h = min

{
i ∈ Ik−1

∣∣ ā(k)
i = a

(k)
h

}
(h = 1, . . . , pk+1),

Ik = {
i
(k)
h

∣∣h = 1, . . . , pk+1
}
.

Then the following equality between multisets:{
ā

(k)
i

}
i∈Ik−1

= {
a

(k)
i

}pk+1

i=1 ∪ {
θi

}pk

i=pk+1+1

holds, and hence

Jk = Ik−1\Ik

follows for each k = 1, . . . , s.
(b) For each k let the elements of Jk be jpk+1+1, . . . , jpk

where jpk+1+1 < · · · < jpk
. Then

σ(jh) = h (h = 1, . . . , p1).

We note that part (b) is a consequence of the second assertion of proposition 5.1.

Example 5.3. We demonstrate the procedure for finding Ik and Jk . See also figure 7. Suppose

f = · · · 0 1 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 · · · ∈ �.

Step 0. From f we read p1 = 4 and where the positions of a1, a2, a3, a4 are I0 = [p1] =
[4] = {1, 2, 3, 4}.
Step 1. Find ā

(1)
h = ah + 2(h − 1) (h ∈ [p1] = [4]). From Ef then p2 = 3 and the positions

of a
(1)
1 , a

(1)
2 , a

(1)
3 are read off. Thus i

(1)
h (h ∈ [p2] = [3]) are

i
(1)
1 = min

{
i ∈ I0

∣∣ ā(1)
i = a

(1)
1

} = min{1} = 1,

i
(1)
2 = min

{
i ∈ I0

∣∣ ā(1)
i = a

(1)
2

} = min{2, 3} = 2,

i
(1)
3 = min

{
i ∈ I0

∣∣ ā(1)
i = a

(1)
3

} = min{4} = 4.
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Hence

I1 = {
i
(1)
h

∣∣h ∈ [p2] = [3]
} = {1, 2, 4}, J1 = I0\I1 = {3}.

Step 2. Find ā
(2)

i
(1)
h

= a
(1)
h + 2(h − 1) (h ∈ [p2] = [3]), that is,

ā
(2)
1 = a

(1)
1 , ā

(2)
2 = a

(1)
2 + 2, ā

(2)
4 = a

(1)
3 + 4.

From E2f we find p3 = 1 and positions of a
(2)
1 . Thus i

(2)
h (h ∈ [p3] = [1]) is

i
(2)
1 = min

{
i ∈ I1

∣∣ ā(2)
i = a

(2)
1

} = min{1} = 4.

Hence

I2 = {
i
(2)
h

∣∣h ∈ [p3] = [1]
} = {4}, J2 = I1\I2 = {1, 2}.

Step 3. E3f is zero. Therefore s = 3 (recall s = L1) and p4 = 0. Hence

I3 = ∅, J3 = I2\I3 = I2 = {4}.
We have obtained all Jk’s.

The permutation σ is determined as follows: we write the elements of J3, J2 and J1 in
a row in this order, where the elements of each Jk are to be arranged in ascending order, and
read them as j1, j2, j3, j4,

J3︷︸︸︷
4

J2︷︸︸︷
1 2

J1︷︸︸︷
3

� � � �

j1 j2 j3 j4.

Then σ(jh) = h, that is,

σ(4) σ (1) σ (2) σ (3)

� � � �

1 2 3 4.

As a corollary of the above propositions, we obtain a representation of the solution to the
IVP for the BBS.

Theorem 5.4 (solution to the IVP for the BBS). Let f ∈ �. The state of the BBS at t
corresponding to the initial state f is given by

ut
n = (T tf )(n) = ηt−1

n+1 − ηt
n+1 − ηt−1

n + ηt
n,

where

ηt
n = max

⎧⎪⎪⎨⎪⎪⎩0, max
J⊂[p1]
J �=∅

[∑
i∈J

(
ai +

i−1∑
j=1

2 min{Wi,Wj } + tWi − n

)
−

∑
i,j∈J
i �=j

min{Wi,Wj }
]⎫⎪⎪⎬⎪⎪⎭ ,

(29)

ai = ai(f ) and Wi = Pσ(i). (We call Wi the amplitude of the ith soliton. ) The values of
the Wi’s are obtained as follows: let i ∈ [p1]; find a number k ∈ [s] such that i ∈ Jk (recall
s = L1); then Wi = k.

16
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Proof. Suppose we have chosen the values of parameters Pi, θi as in theorem 3.2. The
function ηt

n, (3), can be written as

ηt
n = max

⎧⎪⎪⎨⎪⎪⎩0, max
J⊂[N]
J �=∅

⎡⎢⎢⎣∑
i∈J

(θσ(i) + tPσ(i) − n) −
∑
i,j∈J
i �=j

min{Pσ(i), Pσ(j)}

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ .

Putting t = 0 in (21) in corollary 3.3

θσ(i) = ai +
i−1∑
j=1

2 min{Pσ(i), Pσ(j)}.

Substituting this into the above equation yields (29). The method of finding Wi follows from
proposition 5.1. �

Example 5.5. Suppose

f = · · · 0 1 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 · · ·
as in example 5.3. Then p1 = 4. We have already known Jk’s,

J1 = {3}, J2 = {1, 2}, J3 = {4}.
Checking whether i ∈ Jk for i = 1, 2, 3, 4,

1 ∈ J2, therefore W1 = 2;
2 ∈ J2, therefore W2 = 2;
3 ∈ J1, therefore W3 = 1;
4 ∈ J3, therefore W4 = 3.

Remark 5.6. It follows that the values of Wi’s can also be obtained from the following
algorithm.

Input: f ∈ �.
Output: a finite sequence of sequences of 1, 0 and ‘ ’ (SPACE)
Begin

Set f (0) ← f and k ← 0.
While f (k) �= 0 do

1. g ← f (k).
2. In each block of 1′s in g, replace the leftmost 1 by SPACE. In

each block of 0′s of finite length, replace the rightmost 0 by
SPACE. Update g.

3. In g, there can be the blocks of 1′s whose right is SPACE.
Translate each such block, in order from the rightmost block to
the left one, to the right up to the position where its right is 1 or 0.
Update g.

4. In g, there can be the blocks of 0′s whose left is SPACE.
Translate each such block, in order from the leftmost block to
the right one, to the left up to the position where its left is 1 or 0.
Update g.

5. Set f (k+1) ← g and k ← k + 1.
End

17
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Figure 8. Variables of the ultradiscrete Toda molecule equation.

Write the sequences f (k), k = 0, 1, . . . , in order from up to down. We have a two-
dimensional array of 1, 0 and SPACE, in which there are clusters of 1’s. Then the depth of the
ith cluster is Wi .

For example, suppose f = . . . 011100011010011000 . . . is given. Then the algorithm
goes as follows:

f (0) = ...011100011010011000...

g = ...0 1100 1 0 1000... (applied 1 and 2)

g = ...0 1100 10 1000... (applied 3)

f (1) = ...0 1100 10 1000... (applied 4 and 5)

g = ...0 10 000... (applied 1 and 2)

g = ...0 10 000... (applied 3)

f (2) = ...0 10000... (applied 4 and 5)

g = ...0 0000... (applied 1 and 2)

g = ...0 0000... (applied 3)

f (3) = ...00000... (applied 4 and 5).

We therefore obtain

f (0) = ...011100011010011000...

f (1) = ...0 1100 10 1000...

f (2) = ...0 10000...

f (3) = ...00000....

There are four clusters in this array. The depth of each is (from right to left) 2, 2, 1 and 3,
respectively, and hence W1 = 2,W2 = 2,W3 = 1 and W4 = 3.

5.1. Solution to the initial-value problem for the ultradiscrete Toda molecule equation

At this point, we remark that the above results enable us to write an expression for the solution
to the IVP of the ultradiscrete version of the Toda molecule equation.

Let f ∈ �, and consider the state T tf of the BBS at t. Let Qt
m (m = 1, . . . , N ) denote

the length of the mth block of 1’s, and let Et
m (m = 1, . . . , N − 1) denote the length of the

mth block of 0’s. (Blocks are numbered from right to left; see figure 8.) They satisfy a set of
equations

Qt+1
m = min

{ N∑
l=m

Qt
l −

N∑
l=m+1

Qt+1
l , Et

m−1

}
(m = 1, . . . , N),

Et+1
m = Qt

m + Et
m − Qt+1

m+1 (m = 1, . . . , N − 1),

(30)

18



J. Phys. A: Math. Theor. 41 (2008) 175207 J Mada et al

Figure 9. The variables are expressed in terms of the ‘position of block’ variables am’s.

where Et
0 = +∞. These are obtained by ultradiscretizing

I t+1
m =

∏m
j=1 I t

j∏m−1
j=1 I t+1

j

+ V t
m, V t+1

m = I t
m+1V

t
m

I t+1
m

or, equivalently,

I t+1
m = I t

m + V t
m − V t+1

m−1, V t+1
m = I t

m+1V
t
m

I t+1
m

through

−ε log I t
N−m+1 −→ Qt

m, −ε log V t
N−m −→ Et

m

as ε → 0. The set of the above equations is known as the Toda molecule equation (see [4] and
references therein), and hence, we call (30) the ultradiscrete Toda molecule equation.

It is easily seen that the new variables can be expressed in terms of am’s (see figure 9),

Qt+1
m = am(T t+1f ) − am(T tf ), Et+1

m = am(T tf ) − am+1(T
t+1f ). (31)

Since am(T tf ) = At
m = �t

m − �t
m−1 we have

Qt+1
m = �t+1

m − �t+1
m−1 − �t

m + �t
m−1, Et+1

m = �t
m − �t

m−1 − �t+1
m+1 + �t+1

m . (32)

The same argument as in the proof of theorem 5.4 leads to an expression for �’s in terms of
ai’s and Wi’s,

�t
m = max

J⊂[N]
|J |=m

⎡⎢⎢⎣∑
i∈J

(θi + tPi) −
∑
i,j∈J
i �=j

min{Pi, Pj }

⎤⎥⎥⎦

= max
J⊂[N]
|J |=m

⎡⎢⎢⎣∑
i∈J

(θσ(i) + tPσ(i)) −
∑
i,j∈J
i �=j

min{Pσ(i), Pσ(j)}

⎤⎥⎥⎦

= max
J⊂[N]
|J |=m

⎡⎢⎢⎣∑
i∈J

⎛⎝ai +
i−1∑
j=1

2 min{Wi,Wj } + tWi

⎞⎠−
∑
i,j∈J
i �=j

min{Wi,Wj }

⎤⎥⎥⎦ . (33)
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Equation (32) together with (33) gives the solution to the IVP for the ultradiscrete Toda
molecule equation (30).

6. Solution to the initial-value problem for the periodic box–ball system

Let L � 3 and let �L = {f | f : [L] → {0, 1} such that #f −1({1}) < L/2}. Define
TL : �L → �L in the same manner as T in figure 3. The pair (�L, TL) is called a periodic
box–ball system, or PBBS for short, of length L [9, 16]. An element of �L is called a state,
and the mapping TL the time evolution.

Theorem 6.1 (solution to the IVP for the PBBS). Let f be a state of the PBBS: f ∈ �L.
Shifting the origin if necessary, we can assume that the position n = 1 in f is not ‘marked’
(see the caption of figure 3 for the definition of the term ‘marked’). Let the number of blocks
in f be N. Thinking of n = L as the rightmost position and n = 1 the leftmost, we define the
position of ith block ai and the amplitude Wi (i = 1, . . . , N) in the same manner as for the
BBS (cf theorem 5.4). Then the state T t

Lf of the PBBS at t corresponding to the initial state
f is given by (

T t
Lf

)
(n) = ηt−1

n+1 − ηt
n+1 − ηt−1

n + ηt
n;

ηt
n = max

mi∈Z
(i=1,...,N)

⎡⎣ N∑
i=1

mi (bi + tWi − n) −
N∑

i=1

N∑
j=1

mi�ijmj

⎤⎦ ,
(34)

where

bi = ai +
i−1∑
j=1

2 min{Wi,Wj } + Wi +
Zi

2
, (35)

�ij = Zi

2
δij + min{Wi,Wj }, (36)

Zi = L −
N∑

j=1

2 min{Wi,Wj } (37)

with δij being Kronecker’s delta.

Proof. Let �̃L = {f̃ | f̃ : Z → {0, 1} such that f̃ (n + L) = f̃ (n) for all n ∈
Z, and that #(f̃ −1({1}) ∩ [L]) < L/2}. For every f ∈ �L there exists f̃ ∈ �̃L such

that f̃ |[L] = f . Define T̃L : �̃L → �̃L as T̃L(f̃ ) = ˜TL(f̃ |[L]). The correspondence between
the dynamical system (�̃L, T̃L) and the PBBS (�L, TL) is one to one.

Let f be a state of the PBBS: f ∈ �L. For each non-negative integer S, define a state of
the BBS fS ∈ � to be

fS(j) =
{

f (n) if −SL + 1 � j � (S + 1)L and j ≡ n mod L

0 if j � −SL or (S + 1)L + 1 � j .

Then we observe that the limit limS→∞ T tfS should be in �̃L, and its restriction to [L] is the
state T t

Lf at t of the PBBS corresponding to the initial state f .
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It follows from theorem 5.4 that

(T tfS)(n) = η̃t−1
S,n+1 − η̃t

S,n+1 − η̃t−1
S,n + η̃t

S,n;

η̃t
S,n = max

{
0, max

J⊂[(2S+1)N]
J �=∅

[∑
i∈J

(
ãi +

i−1∑
j=1

2 min{W̃i, W̃j } + tW̃i − n

)

−
∑
i,j∈J
i �=j

min{W̃i, W̃j }
]}

, (38)

where ãi and W̃i are the position and the amplitude, respectively, of the ith block of fS .
Clearly, we have

ãi+N = ãi − L, W̃i+N = W̃i

for i ∈ [2SN ], and

ai = ãi+SN = ãi − SL,

Wi = W̃k for all k ∈ [(2S + 1)N ] such that k ≡ i mod N

for i ∈ [N ].
If we write θ̃i = ãi +

∑i−1
j=1 2 min{W̃i, W̃j } for i ∈ [(2S + 1)N ] then

θ̃i+N − θ̃i = −L +
N∑

j=1

2 min{W̃i,Wj } < −2#f −1({1}) +
N∑

j=1

2 min{W̃i,Wj } � 0

(‘<’ follows from the assumption on the number of 1’s in f ; and ‘�’ from #f −1({1}) =∑N
j=1 Wj �

∑N
j=1 min{W̃i,Wj }) and therefore θ̃i > θ̃i+N .

Put Tk = {k,N + k, 2N + k, . . . , 2SN + k} for k = 1, . . . , N , so that
⋃

Tk = [(2S + 1)N ].
Let T denote the set of all subsets of [(2S + 1)N ], and let Tn1,...,nN

= {J ∈ T | #(J ∩ Tk) =
nk(k = 1, . . . , N)} for each (n1, . . . , nN). Then T is the disjoint union of Tn1,...,nN

for all
possible (n1, . . . , nN), hence

η̃t
S,n = max

J∈T
[· · ·] = max

0�nj �2S+1
(j=1,...,N)

[
max

J∈Tn1 ,...,nN

[· · ·]].
Since θ̃i > θ̃i+N , the inner bracket [· · ·] on the right attains its maximum at

Jn1,...,nN
= {

1, N + 1, 2N + 1, . . . , (n1 − 1)N + 1
}⋃

{2, N + 2, 2N + 2, . . . , (n2 − 1)N + 2}
⋃

· · ·
⋃

{N, 2N, 3N, . . . , nNN}.
Since θ̃i+mN = θ̃i − mZi with Zi defined in (37)∑
i∈Jn1 ,...,nN

θ̃i =
N∑

i=1

ni−1∑
m=0

θ̃i+mN =
N∑

i=1

ni−1∑
m=0

(θ̃i − mZi) =
N∑

i=1

(
ni θ̃i − ni(ni − 1)

2
Zi

)
,

∑
i,j∈Jn1 ,...,nN

i �=j

min{W̃i, W̃j } =
N∑

i=1

N∑
j=1

ninj min{Wi,Wj } −
N∑

i=1

niWi.

Thus we have

η̃t
S,n = max

0�nj �2S+1
(j=1,...,N)

[
N∑

i=1

(
ni

(
θ̃i + Wi +

Zi

2
+ tWi − n

)
− n2

i

2
Zi

)

−
N∑

i=1

N∑
j=1

ninj min{Wi,Wj }
]
.
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Define bi,�ij as in (35), (36), and substitute ni = mi + S in η̃. Then, using∑N
j=1 �ij = L/2 and

∑N
i=1 Wi = #f −1({1}), we have

η̃t
S,n = ηt

S,n + CS + (#f −1({1})) · St − NSn,

where

ηt
S,n = max

−S�mj �S+1
(j=1,...,N)

[
N∑

i=1

mi(bi + tWi − n) −
N∑

i=1

N∑
j=1

mi�ijmj

]
,

CS = −S2NL

2
+ S

N∑
i=1

(
θ̃i + Wi +

Zi

2

)
.

(39)

Hence it follows from (38) that

(T tfS)(n) = ηt−1
S,n+1 − ηt

S,n+1 − ηt−1
S,n + ηt

S,n,

where the other terms on the right have been cancelled out.
Now we want to take the limit S → ∞. In each term on the right-hand side the parameter

S enters only in the range of the variable mj . So, taking the limit in (39), we have

lim
S→∞

ηt
S,n = max

mj ∈Z
(j=1,...,N)

[
N∑

i=1

mi(bi + tWi − n) −
N∑

i=1

N∑
j=1

mi�ijmj

]
.

If the matrix (�ij )1�i,j�N were positive definite, then the maximum in the above equation
exists, and hence, lim ηt

S,n exists, and we have the assertion of the theorem.
To show that (�ij )1�i,j�N is positive definite it is sufficient to show I (x) =∑∑
xi�ijxj > 0 for nonzero x = (x1, . . . , xN) ∈ RN . Recall Zi,Wi > 0. Suppose

that Wi1 � · · · � WiN . Accordingly, we write Uk = Wik and yk = xik (k = 1, . . . , N). Then,
for any x �= 0,

I (x) =
N∑

i=1

Zi

2
x2

i +
N∑

i=1

N∑
j=1

min{Ui,Uj }yiyj

=
N∑

i=1

Zi

2
x2

i +
N∑

i=1

Uiy
2
i +

N−1∑
i=1

N∑
j=i+1

2Uiyiyj

=
N∑

i=1

Zi

2
x2

i +
N∑

i=1

Uiy
2
i +

N−1∑
i=1

2Uiyi(yi+1 + · · · + yN)

=
N∑

i=1

Zi

2
x2

i +
N−1∑
i=1

Ui[(yi + · · · + yN)2 − (yi+1 + · · · + yN)2] + UNy2
N

=
N∑

i=1

Zi

2
x2

i + U1(y1 + · · · + yN)2 + (U2 − U1)(y2 + · · · + yN)2 + · · · + (UN − UN−1)y
2
N

> 0.

This completes the proof. �
We note that the right-hand side of (34) is an ultradiscretization of a theta function

[22, 20]. The authors previously presented an algorithm for obtaining the solution to the IVP
for the PBBS [17]. The above-obtained formula seems more explicit than the previous one.
We also note that the same problem was also studied in [23] by a different approach; compared
with theirs, our method for obtaining the values of parameters is fairly easy, and gives the
definite meanings to the parameters.

22



J. Phys. A: Math. Theor. 41 (2008) 175207 J Mada et al

Acknowledgment

The authors wish to thank Ralph Willox for useful comments.

References

[1] Takahashi D and Satsuma J 1990 A soliton cellular automaton J. Phys. Soc. Japan 59 3514–9
[2] Tokihiro T, Takahashi D, Matsukidaira J and Satsuma J 1996 From soliton equations to integrable cellular

automata through a limiting procedure Phys. Rev. Lett. 76 3247–50
[3] Takahashi D and Matsukidaira J 1997 Box and ball system with a carrier and ultradiscrete modified KdV

equation J. Phys. A: Math. Gen. 30 L733–9
[4] Tokihiro T and Satsuma J 2000 On a nature of a soliton cellular automaton RIMS Kokyuroku 1170 48–55
[5] Tokihiro T, Takahashi D and Matsukidaira J 2000 Box and ball system as a realization of ultradiscrete

nonautonomous KP equation J. Phys. A: Math. Gen. 33 607–19
[6] Fukuda K, Yamada Y and Okado M 2000 Energy functions in box ball systems Int. J. Modern Phys. A 15

1379–92
[7] Hatayama G, Hikami K, Inoue R, Kuniba A, Takagi T and Tokihiro T 2001 The A

(1)
M automata related to crystals

of symmetric tensors J. Math. Phys. 42 274–308
[8] Kimijima T and Tokihiro T 2002 Initial-value problem of the discrete periodic Toda equation and its

ultradiscretization Inverse Problems 18 1705–32
[9] Yura F and Tokihiro T 2002 On a periodic soliton cellular automaton J. Phys. A: Math. Gen. 35 3787–801

[10] Yoshihara D, Yura F and Tokihiro T 2003 Fundamental cycle of a periodic box–ball system J. Phys. A: Math.
Gen. 36 99–121

[11] Fukuda K 2004 Box–ball systems and Robinson–Schensted–Knuth correspondence J. Algebr. Comb. 19 67–89
[12] Yamada D 2004 Box ball system associated with antisymmetric tensor crystals J. Phys. A: Math. Gen.

37 9975–87
[13] Kuniba A, Okado M and Yamada Y 2005 Box–ball system with reflecting end J. Nonlinear Math. Phys.

12 475–507
[14] Murata M, Isojima S, Nobe A and Satsuma J 2006 Exact solutions for discrete and ultradiscrete modified KdV

equations and their relation to box–ball systems J. Phys. A: Math. Gen. 39 L27–34
[15] Mikoda A, Inokuchi S, Mizoguchi Y and Fujio M 2006 The Number of Orbits of Periodic Box–ball Systems.

Unconventional Computation (Lecture Notes in Comput. Sci. vol 4135) (Berlin: Springer) pp 181–94
[16] Mada J, Idzumi M and Tokihiro T 2006 The exact correspondence between conserved quantities of a periodic

box–ball system and string solutions of the Bethe ansatz equations J. Math. Phys. 47 053507
[17] Mada J, Idzumi M and Tokihiro T 2006 On the initial value problem of a periodic box–ball system J. Phys. A:

Math. Gen. 39 L617–23
[18] Kuniba A and Takenouchi A 2006 Bethe ansatz at q = 0 and periodic box–ball systems J. Phys. A: Math.

Gen. 39 2551–62
[19] Iwao S and Tokihiro T 2007 Ultradiscretization of the theta function solution of pd Toda J. Phys. A: Math.

Theor. 40 12987–3021
[20] Inoue R and Takenawa T 2007 Tropical spectral curves and integrable cellular automata Preprint 0704.2471
[21] Date E, Jimbo M and Miwa T 1982 Method for generating discrete soliton equations: II J. Phys. Soc.

Japan 51 4125–31
[22] Mikhalin G and Zharkov I 2006 Tropical curve, their Jacobians and theta functions Preprint math.AG/061226
[23] Kuniba A and Sakamoto R 2006 The Bethe ansatz in a periodic box–ball system and the ultradiscrete Riemann

theta function J. Stat. Mech. (2006) P09005

23

http://dx.doi.org/10.1143/JPSJ.59.3514
http://dx.doi.org/10.1103/PhysRevLett.76.3247
http://dx.doi.org/10.1088/0305-4470/30/21/005
http://dx.doi.org/10.1088/0305-4470/33/3/313
http://dx.doi.org/10.1063/1.1322077
http://dx.doi.org/10.1088/0266-5611/18/6/318
http://dx.doi.org/10.1088/0305-4470/35/16/317
http://dx.doi.org/10.1088/0305-4470/36/1/307
http://dx.doi.org/10.1023/B:JACO.0000022567.30060.3a
http://dx.doi.org/10.1088/0305-4470/37/42/010
http://dx.doi.org/10.2991/jnmp.2005.12.4.4
http://dx.doi.org/10.1088/0305-4470/39/1/L04
http://dx.doi.org/10.1063/1.2200142
http://dx.doi.org/10.1088/0305-4470/39/43/L01
http://dx.doi.org/10.1088/0305-4470/39/11/002
http://dx.doi.org/10.1088/1751-8113/40/43/010
http://www.arxiv.org/abs/0704.2471
http://dx.doi.org/10.1143/JPSJ.51.4125
http://www.arxiv.org/abs/math.AG/061226

	1. Motivation and results
	2. The N-soliton solution
	3. Dynamics of the box--ball system and soliton solutions of the ultradiscrete KdV equation
	4. The `10'-elimination and soliton solutions
	5. Solution to the initial-value problem for the box--ball system
	5.1. Solution to the initial-value problem for the ultradiscrete Toda molecule equation

	6. Solution to the initial-value problem for the periodic box--ball system
	Acknowledgment
	References

